HackerRank ‘Non-Divisible Subset’ Solution

Short Problem Definition:

Given a set S of n distinct integers, print the size of a maximal subset S’ of S where the sum of any 2 numbers in S’ are not evenly divisible by k.

Link

Non-Divisible Subset

Complexity:

time complexity is O(N)

space complexity is O(N)

Execution:

This is by all means not an easy task and is also reflected by the high failure ratio of the participants. For a sum of two numbers to be evenly divisible by k the following condition has to hold. If the remainder of N1%k == r then N2%k = k-r for N1+N2 % k == 0. Let us calculate the set of all numbers with a remainder of r and k-r and pick the larger set. If the remainder is half of k such as 2 % 4 = 2 or exactly k such as 4 % 4 = 0, just one number from each of these sets can be contained in S’.

Solution:
def solveSubset(S, k, n):
    r = [0] * k
    
    for value in S:
        r[value%k] += 1
    
    result = 0
    for a in xrange(1, (k+1)//2):
        result += max(r[a], r[k-a])
    if k % 2 == 0 and r[k//2]:
        result += 1
    if r[0]:
        result += 1
    return result
    
n, k = map(int, raw_input().split())
S = map(int, raw_input().split())
print solveSubset(S, k, n)

[rust]
use std::io;

fn get_numbers() -> Vec<u32> {
let mut line = String::new();
io::stdin().read_line(&mut line).ok().expect("Failed to read line");
line.split_whitespace().map(|s| s.parse::<u32>().unwrap()).collect()
}

fn calculate_nondivisible(a: Vec<u32>, n: usize, k: usize) -> u32 {
let mut result = 0;

let mut r = vec![0; k];
for val in a {
r[(val as usize)%k] += 1;
}

for idx in 1..(k+1)/2 {
result += std::cmp::max(r[idx as usize], r[(k-idx) as usize]);
}

if k % 2 == 0 && r[k/2] != 0 {
result += 1;
}
if r[0] != 0 {
result += 1;
}

result
}

fn main() {
let line = get_numbers();
let a = get_numbers();

println!("{}", calculate_nondivisible(a, line[0] as usize, line[1] as usize) );
}
[/rust]


If you enjoyed this post, then make sure you subscribe to my Newsletter and/or Feed.

Facebooktwittergoogle_plusredditpinterestlinkedin